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Abstract 

In k2 factorial and pk−2  fractional factorial designs, each effect is dependent on 
every observation. Therefore, missing observations in factorial designs can 
drastically alter these effects. To restore the orthogonal structure to the design, 
estimation methods are needed. After estimation, the half-normal plot for the 
effects needs to be examined. If insignificant effects approximately point toward 
the origin, then we have a proper estimation. Current, popular estimation 
methods sacrifice effects in order to calculate missing observations. In this paper, 
we have attempted new estimation methods without explicitly sacrificing effects 
that seem to work well. 

1. Introduction 

A variety of factors contributes to missing or bad data in 
experimental designs. Some of these can be machine breakdowns, 
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damage to experimental units, faulty readings from measurement 
systems. Omitting the data is not a good option with this type of 
experimental design, because it can cause havoc to your model. Therefore, 
we need a method to estimation missing or bad data. 

Large factorial designs require an exponential amount of 
experimental runs. A company may realize that an experiment is 
exceeding their budget during the experimentation process. Therefore, 
sometimes it may be impossible to finish an experiment, but there is still 
a need to find something from the experiment. Estimating missing data 
values could be an alternative to potentially salvage an experiment and 
save a company a lot of money. Even in small experiments, may be we 
realize post-research that conditions for a particular treatment 
combination did not remain constant. An outlier or bad data resulted 
from this particular combination. This data could greatly skew all of the 
effects in the experiment. In order to salvage the data and find something 
useful from the experiment, we can use a variety of methods to estimate 
the outcome of this particular treatment combination. 

Several papers exist on estimating missing data. Draper and 
Stoneman [8] give a method to estimate the missing values, but their 
method depends on sacrificing some of the effects to estimate the missing 
values. John proposes a method similar to Draper and Stoneman. 
Wilkinson [17, 18] gives a method that can require considerable 
computations. Shearer [14] give a new procedure to use with factorial 
designs using an iterated method and convergence of such iteration, 
Qumsiyeh and Shaughnessy [13] proposed the bootstrap for estimating 
missing responses.  

In this paper, we will outline two common methods for estimating 
missing data, the first introduced by Draper and Stoneman [8] and the 
second by John [9]. These methods look to minimize contrasts/effects in 
order to estimate missing data points. We will introduce alternative 
methods that do not require sacrificing contrasts/effects. 
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2. Estimation Methods for Missing Data 

2.1. Draper and Stoneman 

In order to tell if a factor or interaction is significant, we need to 
calculate contrasts and effects. The contrast is the total difference 
between responses where a factor is at the high level and responses 
where the factor is at the low level. In order to calculate this contrast 

relatively easily, we only need to think of it as product of the vector =ty  

( )nyyy ,,, 21 …  of the responses with the column of that factor say ,1i  

where i1  is vector of 1 or +1 elements. The Draper and Stoneman 

method estimates a missing data point by setting the highest order 

interaction equal to zero. Note that 011 =j
t

i  for .ji ≠  This is the same 

as minimizing the absolute value of highest order contrast. The effect of a 

factor is the contrast divided by .2 1−k  Because the contrast is the 
numerator of the effect, this is also the same as minimizing the absolute 
value of the effect of the highest order interaction. If we have to sacrifice 
an effect to estimate a missing data point, it is very common to sacrifice 
the highest order interaction. Empirically, it is common that this contrast 
is relatively close to zero. This is a very popular method. However, we 
find it hard to fully buy in to this method because it is possible for any 
experiment to produce a significant effect with the highest order contrast. 

Before estimation, Draper and Stoneman employ a method to detect a 
bias in the design. Without a missing response, if the insignificant effects 
in a half-normal plot do not point toward the origin, then there is a bias 
in the design. Research then needs to be used to find which point is 
causing this bias. Once this response is determined, they throw it out and 
use an estimation method. After estimation, they examine the half-
normal plot. If insignificant effects in the new half-normal plot point 
toward the origin, then they have a proper estimation. 

In their paper, Draper and Stoneman produce two specific examples. 

They look at a single replicate of a 32  factorial design. Responses in 
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standard order are 10, 16, 2, 22, 8, 20, 2, and 44. The standard order of 

responses in a 32  factorial design, results in a nice grid of factors. The 
standard order here is (), a, b, ab, c, ac, bc, and abc, where, for example, 
ac means both A and C are at the +1 setting. The response value 44 was 
produced under different circumstances than the rest of the responses, so 
it is deemed the bad data point causing the bias in the design. Setting the 
highest order interaction contrast equal to zero, results in an estimation 
of 28 instead of 44.  

Experimental grid: 

 A B C Y 

() 1 1 1 10 

a   1 1 1 16 

b 1   1 1   2 

ab   1   1 1 22 

c 1 1   1   8 

ac   1 1   1 20 

bc 1   1   1   2 

abc   1   1   1 44 

The half-normal plots before and after the estimation are given in the 
following table (Table 1): 
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Table 1 

 

As you can see, the insignificant effects before estimation form a line 
that does not point toward the origin. However, after the bad data point 
was thrown out and an estimation method was employed, the significant 
effects form a line that approximates toward the origin slightly better. 
Therefore, this is a proper estimation. 

2.2. Peter John 

 John [9] publishes a method that is a slight variation of the Draper 
and Stoneman method. This method involves minimizing the sum of 
squared contrasts for the highest order interaction and the k  1 ordered 
interactions. John himself says that this method should only be used at 
times when the Draper and Stoneman method does not produce a proper 
estimation. Reasoning for this seems to be that we are sacrificing 
multiple effects. 

The Draper and Stoneman method only sacrifices one effect. Like 

Draper and Stoneman, John shows an example of a 32  factorial design. 
John starts out with an experimental design that has a missing data 
point. No bad data detection methods are used by John. Standard order of 
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responses with missing point labelled as x is 23, 26, 25, 36, 25, 31, x,    
and 34. After minimizing the sum of squared contrasts for the single       
3-way interaction and the three 2-way interactions, John finds an 
estimation of 29. 

Experimental grid: 

 A B C Y 

() 1 1 1 23 

a   1 1 1 26 

b 1   1 1 25 

ab   1   1 1 36 

c 1 1   1 25 

ac   1 1   1 31 

bc 1   1   1   x 

abc   1   1   1 34 

The half-normal plot after the estimation is given in the following 
table (Table 2): 

Table 2 

 

As you can see, the insignificant absolute effects of the half-normal 
plot form a line that approximately points toward the origin. 
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3. New Estimation Methods 

Initially, to come up with a new estimation method, we look at 
particular circumstances where these methods are impossible to employ. 
For instance, in a half-fractional factorial design, the highest order 
interaction is the generator factor. Also, the (k  1)-way interactions are 
aliases with main effects. Therefore, we would not want to sacrifice those 
by minimizing their contrasts. Therefore, the previous methods of Draper 
and Stoneman and of John cannot be used. So, we need to come up with 
something different from the other methods. The following estimation 
methods provide an alternative. 

For one missing response, estimation is done by simple average of all 
responses that share k  1 levels with the missing response, as we will see 
later. 

For two missing responses, there are two different cases. If the 
missing responses do not share k  1 levels, then we can estimate each 
missing response by simple average of those responses that share              
k  1 levels with the missing response. This is the same as estimation for 
one missing response. 

However, if the missing responses share k  1 levels, then we are 
missing a necessary response to estimate by a simple average. To simplify 
this method, assume X is the first missing response and Y is the second 
missing response. We should initially estimate X by simple average of all 
available points that share k  1 levels with X. Then, estimate Y by 
simple average of all data points that share k  1 levels with Y including 
the new X. Then re-estimate X by simple average of all responses that 
share k  1 levels including the Y. Because this method is determined by 
which missing response is calculated first, we should repeat this process 
starting with an estimation of Y and then following the same process. 
Now, we should have two estimates for each missing data point. Simple 
average of these estimates should provide a solid estimation for each 
missing response. We will illustrate this with an example later. 

The following is an example of a 42  factorial design. This example 
was introduced by Yin and Jullie [19]. In this example, the response 
variable of interest is the etch rate for silicon nitride. Experimenters have 
come up with four factors that they believe affect the response variable. 



MAHER QUMSIYEH and KRAIG KIRCHNER 138

Each of the four factors listed below with the unit of measure and 
high/low levels: 

● Factor A: Anode cathode gap, low-0.8cm high-1.2cm. 

● Factor B: Pressure in the reactor chamber, low-4.5mTorr high- 
550mTorr. 

● Factor C: C2F6 gas flow, low-125 SCCM high-200 SCCM. 

● Factor D: Power applied to the cathode, low-275W high-325W. 

After running each of the treatment combinations, we create a grid of 
combinations. 

Experimental grid: 

 A B C D Y 

() 1 1 1 1 550 

a   1 1 1 1 669 

b  1   1 1 1 604 

ab    1   1 1 1 650 

c  1 1   1 1 633 

ac    1 1   1 1 642 

bc  1   1   1 1 601 

abc    1   1   1 1        635(---) 

d  1 1 1   1      1037 

ad    1 1 1   1 749 

bd  1   1 1   1      1052 

abd   1   1 1   1 868 

cd 1 1   1   1      1075 

acd    1 1   1   1 860 

bcd  1   1   1   1      1063 

abcd    1   1   1   1 729 

Using the half-normal plot, it was determined that factors A, D and 
their interaction AD are the active factors (factors that have an effect on 
the response). 
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3.1. One missing response in a 42  factorial design 

Let us assume that the response 635 for the abc setting is missing. 
Since this design is complete, the missing response was chosen randomly. 
Again, the response variable of interest is etch rate for silicon nitride. The 
treatment combinations that share exactly k  1 levels with this response 
(abc) are ab, ac, bc, and abcd. After we take a simple average of these 
responses, we have 653.75 as an estimate for the missing response. Now 
that we have our estimates, let us look at the half-normal plot of absolute 
effects (Table 3). 

Table 3 

 

Insignificant absolute effects form a line that approximately points 
toward the origin. Therefore, we have a proper estimation; also, factors A, 
D and their interaction AD are the active factors, which is the same as 
the case with no missing responses. 

3.2. Two missing responses in a k2  factorial design 

Case I. Two missing data points in a 42  factorial design that do not 
share 31 =−k  levels. 
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Experimental grid: 

 A B C D Y 

() 1 1 1 1 550 

a   1 1 1 1 669 

b  1   1 1 1 604 

ab   1   1 1 1 650 

c  1 1   1 1 633 

ac   1 1   1 1 --- 

bc 1   1   1 1 601 

abc   1   1   1 1 635 

d 1 1 1  1   1037 

ad   1 1 1  1 749 

bd 1   1 1  1   1052 

abd  1   1 1  1 868 

cd 1 1   1  1   1075 

acd   1 1   1  1 860 

bcd  1   1   1  1 --- 

abcd   1   1   1  1 729 

Assume we have two missing responses in a k2  factorial design. 
Again, for this particular problem, we are going to use the design 
previously introduced as an example. Since this design is complete, we 
are going to assume two responses are missing. Responses ac and bcd are 
randomly selected as missing responses. The treatment combinations that 
share exactly 3 levels with response ac are c, abc, a, and acd. The 
treatment combinations that share exactly 3 levels with response bcd are 
bc, cd, bd, and abcd. These do not have any common combination. Taking 
a simple average of these responses for ac, we have 699.25 as an estimate 
for the missing response of ac. In addition, taking a simple average of 
these responses for bcd, we have 864.25 as an estimate for the missing 
response of bcd. Now that we have our estimates, let us look at the half-
normal plot of absolute effects (Table 4). 
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Table 4 

 

Insignificant absolute effects form a line that approximately points 
toward the origin. Therefore, we have a proper estimation. Factors A, D 
and their interaction AD are the active factors (A is slightly significant so 
it needs to be examined in an additional experiment), this is the same as 
the case with no missing responses. 
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Case II. Two missing data points in a 42  factorial design that share 
31 =−k  levels.   

Experimental grid: 

 A B C D Y 

() 1 1 1 1 550 

a   1 1 1 1 669 

b 1   1 1 1 604 

ab   1   1 1 1 650 

c 1 1   1 1 633 

ac   1 1   1 1 642 

bc 1   1   1 1 601 

abc   1   1   1 1 635 

d 1 1 1  1   1037 

ad   1 1 1  1 --- 

bd 1   1 1  1   1052 

abd   1   1 1  1 868 

cd 1 1   1  1   1075 

acd   1 1   1  1 --- 

bcd 1   1   1  1   1063 

abcd   1   1   1  1 729 

Responses ad and acd that used to be 749 and 860 are randomly 
selected as missing responses. The treatment combinations that share 
exactly 3 levels with response ad are d, abd, a, and acd (note that acd is 
among those). The treatment combinations that share exactly 3 levels 
with response acd are ac, ad, cd, and abcd (note that ad is among those 
too). As mentioned previously, we have a step procedure for estimation 
here. Estimate the first missing response by simple average of all three 
available responses that share 3 levels with the missing response. Then, 
estimate the second missing observation by simple average of all 
responses that share 3 levels with the missing response including the 
previous estimation. Finally, re-estimate the first missing observation by 
simple average of all responses that share 3 levels with the missing 
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response including the second estimation. Repeat the procedure again by 
estimating the second missing response first. Now, we have two 
estimations for each response. After we take a simple average of these 
estimates, we have 858 as an estimate for response ad and we have 826 
as an estimate for response acd. Now that we have our estimates, let us 
look at the half-normal plot of absolute effects (Table 5). 

Table 5 

 

Insignificant absolute effects form a line that approximately points 
toward the origin. Therefore, we have a proper estimation; also, factors A, 
D and their interaction AD are the active factors, which is the same as 
the case with no missing responses. 
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3.3. One missing response in a 152 −  fractional factorial design 

Experimental grid: 

 A = BCDE B = ACDE C = ABDE D = ABCE E = ABCD R 

e   1 1 1 1   1  8 

a    1 1 1 1  1  9 

b   1   1 1 1  1  34 

abe     1   1 1 1   1 52 

c   1  1   1 1  1 16 

ace    1  1   1 1   1 22 

bce   1   1   1 1   1 45 

abc    1   1   1 1  1 60 

d   1  1  1   1  1  6 

ade    1  1  1   1    1 10 

bde   1    1  1   1    1 --- 

abd    1    1  1   1   1 50 

cde   1   1    1   1     1 15 

acd    1   1    1   1   1 21 

bcd   1    1    1   1   1 44 

abcde     1    1    1   1     1 63 

This is a specific 152 −  fractional factorial design. This is a half-
fractional factorial design, therefore, we only have half of the 
observations and each effect is aliased with another effect. Unfortunately, 
for any missing response, we cannot estimate by simple average of all 
responses that share k  1 levels with the missing response, because not 
all of these responses, for any possible missing observation, are in the 
fraction of responses we have. Therefore, we can estimate a missing 
response by simple average of all responses that share k  2 levels with 
the missing response; this is explained in the next paragraph. 

Assume we have one missing response in the 152 −  fractional factorial 
design. We cannot use our original 42  factorial design example for this 
problem. This fractional factorial design was produced to see, if specific 
factors influenced production yield. The five factors were aperture setting 
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A, exposure time B, development time C, mask dimension D, and etch 
rate E. Half of the treatment combinations were run corresponding to the 
generator factor I = ABCDE. All combinations, where factor ABCDE was 
set at the higher level were used in the design. Response bde was 
randomly selected as missing observations. All responses that share k  1 
levels with bde are bd, be, de, abde, and bcde. These combinations are 
either have two factors at the higher level or four factors at the higher 
level. However, treatment combinations in our design have one, three, or 
five factors at the higher level. Any combination that is missing will not 
share k  1 levels with the missing response. We introduce a method to 
estimate the missing response by simple average of all responses that 
share k  2 levels with the missing response. bde shares exactly k  2 
levels with b, d, e, abe, bce, ade, abd, cde, and bcd. The simple average of 
all these responses results in a estimation of 25.56 for bde. Now that we 
have our estimates, let us look at the half-normal plot of absolute effects 
(Table 6). 

Table 6 

 

Insignificant absolute effects form a line that approximately points 
toward the origin. Therefore, we have a proper estimation, with A, B, C 
and the interaction of A and B are the active factors. 
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4. Conclusion 

In all cases, examination of half-normal plots show that insignificant 
effects form a line that approximately points through the origin. 
Therefore, we have produced proper estimations. At this point, we can 
attempt to learn something useful from the experiment. This may not 
work perfectly for estimating every missing response. When half-normal 
plots of absolute effects are inconclusive, another estimation methods 
needs to be employed. 
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